منابع مشابه
An Accelerated Inexact Proximal Point Algorithm for Convex Minimization
The proximal point algorithm (PPA) is classical and popular in the community of Optimization. In practice, inexact PPAs which solves the involved proximal subproblems approximately subject to certain inexact criteria are truly implementable. In this paper, we first propose an inexact PPA with a new inexact criterion for solving convex minimization, and show that the iteration-complexity of this...
متن کاملAn Approximate Proximal Point Algorithm for Maximal Monotone Inclusion Problems
This paper presents and analyzes a strongly convergent approximate proximal point algorithm for finding zeros of maximal monotone operators in Hilbert spaces. The proposed method combines the proximal subproblem with a more general correction step which takes advantage of more information on the existing iterations. As applications, convex programming problems and generalized variational inequa...
متن کاملA Hybrid Projection – Proximal Point Algorithm ∗
We propose a modification of the classical proximal point algorithm for finding zeroes of a maximal monotone operator in a Hilbert space. In particular, an approximate proximal point iteration is used to construct a hyperplane which strictly separates the current iterate from the solution set of the problem. This step is then followed by a projection of the current iterate onto the separating h...
متن کاملInexact Halpern-type proximal point algorithm
We present several strong convergence results for the modified, Halpern-type, proximal point algorithm xn+1 = αnu + (1 − αn)Jβn xn + en (n = 0, 1, . . .; u, x0 ∈ H given, and Jβn = (I + βn A)−1, for a maximal monotone operator A) in a real Hilbert space, under new sets of conditions on αn ∈ (0, 1) and βn ∈ (0,∞). These conditions are weaker than those known to us and our results extend and impr...
متن کاملFinite termination of the proximal point algorithm
where q~ is a c losed, convex func t ion def ined on R n, having values in ~ and S is a c losed, convex set in ~n. We write S for the op t ima l so lu t ion set o f (1), S : = arg minxes cb(x) and assume this set to be non-empty , in o rde r tha t a p ro jec t ion o p e r a t i o n on to this set is well def ined. In o rde r to s impl i fy our analysis , let us define , b ~ ( x ) := ¢~(x )+~, (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Global Optimization
سال: 2018
ISSN: 0925-5001,1573-2916
DOI: 10.1007/s10898-018-0655-9